Почему прогнозы погоды не бывают точными?
Метеорология — одна из самых продвинутых наук современности. Для прогноза погоды задействованы космические спутники, радары, суперкомпьютеры, мощные data-центры. Разработками в этом направлении занимаются крупные научные институты и IT-гиганты вроде Google, Nvidia, Microsoft, Huawei. Однако прогноз так и не становится точным на 100% и вряд ли когда-нибудь таким будет. В чём же причины?
Первая причина: атмосфера стохастична (сложно прогнозируема). Движение воздушных масс определяется сотнями факторов — как природных, так и антропогенных, предсказуемых и случайных.
Атмосферный бассейн можно сравнить с ванной в квартире. Представьте, что вас попросят включить оба крана с горячей и холодной водой, капнуть в ванну две капли красителя, отойти в другую комнату и в деталях предсказать, какой рисунок на воде оба красителя дадут через 2 часа. Миссия практически невыполнима. Чем-то похожим, только в масштабе планеты, занимаются метеорологи.
Вторая причина: предел предсказуемости погоды — 14 дней. Так как атмосфера является сложной нелинейной системой, она чутко реагирует даже на небольшие изменения отдельных параметров. Плюс к этому любые численные модели тоже чувствительны к начальным условиям (так называемый “эффект бабочки”). Поэтому метеорологи стараются делать ансамбли из различных моделей, чтобы получить более надёжный прогноз, учитывающий некоторую долю неопределённости данных, и диапазон возможных сценариев для лучшего предсказания поведения атмосферы. Однако даже в таких случаях из-за сложности устройства воздушной оболочки Земли оправдываемость прогнозов резко падает со временем.
Третья причина: метеорологам не хватает данных. Например, в мире имеется немногим более 10 тысяч метеостанций на 150 миллионов км² площади суши. То есть, в среднем по планете 1 метеостанция приходится 15 тысяч км². Это как иметь один пункт наблюдений на всю Черногорию или на всю Калининградскую область, где одномоментно погодные условия могут быть очень разными.
Ещё метеорологам не хватает радаров, которые сканируют местность в радиусе 200-300 километров и выдают высокоточное изображение актуального состояния атмосферы. На всю Россию приходится меньше ста радаров, причём за Уралом их совсем мало. Космические спутники тоже не всесильны: порой из-за плотной облачно-дождевой пелены на Земле не удаётся принять информацию из космоса. В итоге специалистам приходится закрывать дыры в одеяле данных заплатками интерполяции (нахождение промежуточных значений) и используя нестандартные источники информации. Например, Яндекс Погода собирает сообщения от своих пользователей для уточнения прогноза.
Четвёртая причина: ошибки измерений. Даже если у нас есть работающая метеостанция, избежать ошибок в измерениях не получится. Иногда на это влияет неграмотная установка станции, иногда – плохая калибровка приборов, заводская погрешность, ошибка глаза наблюдателя. Одна маленькая погрешность на одной далёкой метеостанции, на первый взгляд, не играет роли для глобального прогноза. Но когда мы говорим о создании масштабных физико-математических моделей, где используется большое количество данных, суммарная цена маленьких погрешностей может оказаться высокой.
Пятая причина: несоответствие детализации глобальных численных моделей и размеров локальных атмосферных явлений. Одна из сложностей современной метеорологии – прогнозирование грозовых суперячеек. При их относительно небольшом размере (около 3-4 километров в диаметре) используемые в прогнозе погоды математические алгоритмы (численные модели) с разрешением 9-20 км попросту не видят опасное скопление облачных масс. Хотя суперячейки оказывают сильное влияние, принося сильные осадки и резкое понижение температуры воздуха.
Шестая причина: компьютерные алгоритмы не умеют достоверно определять отдельные атмосферные явления, даже крупномасштабные. Классическая ситуация: атмосферные фронты (зоны резкого изменения погоды) протяжённостью до 2-3 тысяч километров зачастую до сих пор отрисовываются на картах вручную. Потому что из-за сглаженности расчётов и неспособности машинных алгоритмов улавливать тонкие и динамичные атмосферные процессы автоматический прогноз пропускает локальные резкие перепады температуры и давления.
Седьмая причина: большой объём анализируемых данных и дороговизна вычислений. Один только Европейский центр среднесрочных прогнозов погоды (ECMWF) каждый день генерирует 287 терабайт метеорологической информации. Это в 15 раз больше объёма данных, который совокупно содержится во всех статьях Википедии на всех доступных языках. Соответственно, на содержание data-центров и работу мощных суперкомпьютеров требуется постоянное щедрое финансирование. Далеко не все организации могут себе позволить такие расходы. Поэтому увеличение детализации прогноза, добавление новых источников погодной информации и новых алгоритмов для повышения качества прогноза не всегда доступны учёным. А если не получается вести расчёты на доступных мощностях, то используются различные упрощения формул и параметризации данных, что заметно влияет на итоговый результат.
И всё же, несмотря на сложность атмосферы, жёсткие временные рамки возможностей прогнозирования, нехватку метеоданных, неопределённости в начальных условиях, сложности в работе с автоматизированными прогнозами и дороговизну качественных расчётов погоды, мировая метеорология развивается семимильными шагами. Рекордная точность – до 98% для прогноза на следующий день – была немыслима буквально каких-то 30-40 лет назад. Как будет дальше развиваться наука об атмосфере, следите вместе с нами.
Коротко о главном:
- Атмосфера — сложная и изменчивая система, поведение которой крайне сложно спрогнозировать.
- Данных измерений на местах всегда недостаточно, поэтому продолжайте сообщать нам о погоде и делать прогноз точнее.
- На качество прогноза влияют ошибки при измерениях.
- На нынешнем этапе технологического развития глобальные численные модели неспособны заметить и определить отдельные атмосферные явления.
- Большой объём используемых метеорологических данных и дороговизна их обработки затрудняют развитие прогноза погоды и метеорологической науки на глобальном уровне.
Почитать ещё