ΠΠ²ΡΠΎΠ±ΡΡ
20
Π’ΠΎΡΠ³ΠΎΠ²ΡΠΉ ΡΠ΅Π½ΡΡ
ΠΠ°Π±Π΅ΡΠ΅ΠΆΠ½Π°Ρ ΡΠ»ΠΈΡΠ°
Π’ΠΎΡΠ³ΠΎΠ²ΡΠΉ ΡΠ΅Π½ΡΡ
Π‘ΠΎΡ ΡΠ°Π½ΠΈΡΡ
ΠΡΡΠ°Π½ΠΎΠ²ΠΊΠΈ
Π Π°ΡΠΏΠΈΡΠ°Π½ΠΈΠ΅
ΠΡΡΠ°Π½ΠΎΠ²ΠΊΠΈ
Π’ΠΎΡΠ³ΠΎΠ²ΡΠΉ ΡΠ΅Π½ΡΡ
ΠΠ°Π³Π°Π·ΠΈΠ½ β 21
15 ΠΎΡΡΠ°Π½ΠΎΠ²ΠΎΠΊ
Π¨ΠΊΠΎΠ»Π° β 2
ΠΠ°Π³Π°Π·ΠΈΠ½ ΠΠ΅ΡΡΡΠΊΠ°
Π‘ΠΠ
Π‘Π°Π΄Ρ
Π¨Π΅ΡΡΠ°ΠΊΠΎΠ²ΠΎ
ΠΠ°Π±Π΅ΡΠ΅ΠΆΠ½Π°Ρ ΡΠ»ΠΈΡΠ°
Π‘ΡΠ²ΠΎΡΠΎΠ²ΡΠΊΠΈΠΉ
ΠΠ°Π±Π΅ΡΠ΅ΠΆΠ½Π°Ρ ΡΠ»ΠΈΡΠ°
Π‘Π°Π΄Ρ
Π‘ΠΠ
ΠΠ°Π³Π°Π·ΠΈΠ½ ΠΠ΅ΡΡΡΠΊΠ°
Π₯Π»Π΅Π±ΠΎΠ·Π°Π²ΠΎΠ΄
ΠΠΈΠ·ΠΈΡ
ΠΠ±ΡΠ΅ΠΆΠΈΡΠΈΠ΅ β 6
ΠΠ°ΠΌΠ±Π°
ΠΠ°Π½ΠΊ
Π’ΠΎΡΠ³ΠΎΠ²ΡΠΉ ΡΠ΅Π½ΡΡ
Π‘ΠΌΠΎΡΡΠΈΡΠ΅ ΡΡΠΎΡ ΠΆΠ΅ ΠΌΠ°ΡΡΡΡΡ Π² ΠΏΡΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ
ΠΠΎΠΏΡΠΎΠ±ΠΎΠ²Π°ΡΡ
ΠΠ°ΡΡΡ
β’
ΠΠ΅Π»Π΅Π·Π½ΠΎΠ³ΠΎΡΡΠΊβΠΠ»ΠΈΠΌΡΠΊΠΈΠΉ
β’
ΠΠ±ΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΠΉ ΡΡΠ°Π½ΡΠΏΠΎΡΡ